182 research outputs found

    Odd Sensation Induced by Moving-Phantom which Triggers Subconscious Motor Program

    Get PDF
    Our motor actions are sometimes not properly performed despite our having complete understanding of the environmental situation with a suitable action intention. In most cases, insufficient skill for motor control can explain the improper performance. A notable exception is the action of stepping onto a stopped escalator, which causes clumsy movements accompanied by an odd sensation. Previous studies have examined short-term sensorimotor adaptations to treadmills and moving sleds, but the relationship between the odd sensation and behavioral properties in a real stopped-escalator situation has never been examined. Understanding this unique action-perception linkage would help us to assess the brain function connecting automatic motor controls and the conscious awareness of action. Here we directly pose a question: Does the odd sensation emerge because of the unfamiliar motor behavior itself toward the irregular step-height of a stopped escalator or as a consequence of an automatic habitual motor program cued by the escalator itself. We compared the properties of motor behavior toward a stopped escalator (SE) with those toward moving escalator and toward a wooden stairs (WS) that mimicked the stopped escalator, and analyzed the subjective feeling of the odd sensation in the SE and WS conditions. The results show that moving escalator-specific motor actions emerged after participants had stepped onto the stopped escalator despite their full awareness that it was stopped, as if the motor behavior was guided by a “phantom” of a moving escalator. Additionally, statistical analysis reveals that postural forward sway that occurred after the stepping action is directly linked with the odd sensation. The results suggest a dissociation between conscious awareness and subconscious motor control: the former makes us perfectly aware of the current environmental situation, but the latter automatically emerges as a result of highly habituated visual input no matter how unsuitable the motor control is. This dissociation appears to yield an attribution conflict, resulting in the odd sensation

    Expression of Neurotrophins and Their Receptors Tropomyosin-related kinases (Trk) under Tension-stress during Distraction Osteogenesis

    Get PDF
    The localization and expression of neurotrophins and their receptors during distraction osteogenesis was investigated in 72 male rat femurs (11 weeks old) to further clarify the concurrence of cellular and molecular events of new bone formation. After osteotomy, a 7-day lag phase was followed by distraction at the rate of 0.25 mm/12 h for 21 days (distraction phase), and a 7-day consolidation phase. The localization of neurotrophins (NGF, BDNF and NT-3) and their receptors tropomyosinrelated kinases (TRKA, TRKB and TRKC) by immunostaining showed positive staining in bone forming cells in each stage, although the presence and staining intensity varied by cell type and phase. The expressions of NGF, BDNF and NT-3 by real-time polymerase chain reaction (real-time PCR) showed that the peak of the mRNA expression of NGF occurred 10 days after distraction. NT-3 increased during bone extension, but decreased when distraction stopped. In contrast, BDNF continued to increase gradually throughout the distraction and consolidation phases. These findings suggest that neurotrophins and their receptors may play different roles in endochondral and intramembranous ossification in distraction osteogenesis. The tension stress caused by distraction may stimulate the expression of neurotrophins and their receptors, and promote osteogenesis

    GOGOT: a method for the identification of differentially expressed fragments from cDNA-AFLP data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One-dimensional (1-D) electrophoretic data obtained using the cDNA-AFLP method have attracted great interest for the identification of differentially expressed transcript-derived fragments (TDFs). However, high-throughput analysis of the cDNA-AFLP data is currently limited by the need for labor-intensive visual evaluation of multiple electropherograms. We would like to have high-throughput ways of identifying such TDFs.</p> <p>Results</p> <p>We describe a method, GOGOT, which automatically detects the differentially expressed TDFs in a set of time-course electropherograms. Analysis by GOGOT is conducted as follows: correction of fragment lengths of TDFs, alignment of identical TDFs across different electropherograms, normalization of peak heights, and identification of differentially expressed TDFs using a special statistic. The output of the analysis is a highly reduced list of differentially expressed TDFs. Visual evaluation confirmed that the peak alignment was performed perfectly for the TDFs by virtue of the correction of peak fragment lengths before alignment in step 1. The validity of the automated ranking of TDFs by the special statistic was confirmed by the visual evaluation of a third party.</p> <p>Conclusion</p> <p>GOGOT is useful for the automated detection of differentially expressed TDFs from cDNA-AFLP temporal electrophoretic data. The current algorithm may be applied to other electrophoretic data and temporal microarray data.</p

    ROKU: a novel method for identification of tissue-specific genes

    Get PDF
    BACKGROUND: One of the important goals of microarray research is the identification of genes whose expression is considerably higher or lower in some tissues than in others. We would like to have ways of identifying such tissue-specific genes. RESULTS: We describe a method, ROKU, which selects tissue-specific patterns from gene expression data for many tissues and thousands of genes. ROKU ranks genes according to their overall tissue specificity using Shannon entropy and detects tissues specific to each gene if any exist using an outlier detection method. We evaluated the capacity for the detection of various specific expression patterns using synthetic and real data. We observed that ROKU was superior to a conventional entropy-based method in its ability to rank genes according to overall tissue specificity and to detect genes whose expression pattern are specific only to objective tissues. CONCLUSION: ROKU is useful for the detection of various tissue-specific expression patterns. The framework is also directly applicable to the selection of diagnostic markers for molecular classification of multiple classes

    FINGER FORCES DURING BASEBALL PITCHING

    Get PDF
    A 3D force transducer was installed in an official baseball to make a direct measurement of finger force imparting on the ball during pitching. Eight collegiate pitchers threw a 4- seam fastball at their maximal speed. Force was measured separately from each of the index, middle, and ring fingers, and the thumb. Peaks and peak occurrence time of computed resultant and shear forces were evaluated. Index and middle finger forces generally had a bimodal pattern with the first and second peaks appeared at about 80, and 96% of the stride foot contact period, respectively. Their force magnitude reached 90 N. and above. Magnitude of shear force was about half of the resultant force. Forces by the thumb and ring finger were less than those by the index and middle fingers. The findings indicated that the fingers were applying considerably large magnitude of force during pitching

    INTER-TRIAL DIFFERENCE ANALYSIS THROUGH APPEARANCE-BASED MOTION TRACKING

    Get PDF
    The purpose of this study is to develop a method for quantitative evaluation and visualization of inter-trial differences in the motion of athletes. Previous methods for kinematic analyses of human movement have required attaching specific equipment to a body segment or can only be used in an environment designed for analyses. Therefore, they are difficult to use for observing motions in real games. To enhance the applicability to real-game situations, we propose appearance-based motion tracking. Our method only requires an image sequence from a camera. From the image sequence, automatic detection of trials and a difference analysis of them are conducted. We applied our method to the analysis of pitching motions in actual baseball games. Though we have no quantitative evaluations yet, the experimental results imply the efficacy of our method

    Odd Sensation Induced by Moving-Phantom which Triggers Subconscious Motor Program

    Get PDF
    Our motor actions are sometimes not properly performed despite our having complete understanding of the environmental situation with a suitable action intention. In most cases, insufficient skill for motor control can explain the improper performance. A notable exception is the action of stepping onto a stopped escalator, which causes clumsy movements accompanied by an odd sensation. Previous studies have examined short-term sensorimotor adaptations to treadmills and moving sleds, but the relationship between the odd sensation and behavioral properties in a real stopped-escalator situation has never been examined. Understanding this unique action-perception linkage would help us to assess the brain function connecting automatic motor controls and the conscious awareness of action. Here we directly pose a question: Does the odd sensation emerge because of the unfamiliar motor behavior itself toward the irregular step-height of a stopped escalator or as a consequence of an automatic habitual motor program cued by the escalator itself. We compared the properties of motor behavior toward a stopped escalator (SE) with those toward moving escalator and toward a wooden stairs (WS) that mimicked the stopped escalator, and analyzed the subjective feeling of the odd sensation in the SE and WS conditions. The results show that moving escalator-specific motor actions emerged after participants had stepped onto the stopped escalator despite their full awareness that it was stopped, as if the motor behavior was guided by a “phantom” of a moving escalator. Additionally, statistical analysis reveals that postural forward sway that occurred after the stepping action is directly linked with the odd sensation. The results suggest a dissociation between conscious awareness and subconscious motor control: the former makes us perfectly aware of the current environmental situation, but the latter automatically emerges as a result of highly habituated visual input no matter how unsuitable the motor control is. This dissociation appears to yield an attribution conflict, resulting in the odd sensation

    A normalization strategy applied to HiCEP (an AFLP-based expression profiling) analysis: Toward the strict alignment of valid fragments across electrophoretic patterns

    Get PDF
    BACKGROUND: Gene expression analysis based on comparison of electrophoretic patterns is strongly dependent on the accuracy of DNA fragment sizing. The current normalization strategy based on molecular weight markers has limited accuracy because marker peaks are often masked by intense peaks nearby. Cumulative errors in fragment lengths cause problems in the alignment of same-length fragments across different electropherograms, especially for small fragments (< 100 bp). For accurate comparison of electrophoretic patterns, further inspection and normalization of electrophoretic data after fragment sizing by conventional strategies is needed. RESULTS: Here we describe a method for the normalization of a set of time-course electrophoretic data to be compared. The method uses Gaussian curves fitted to the complex peak mixtures in each electropherogram. It searches for target ranges for which patterns are dissimilar to the other patterns (called "dissimilar ranges") and for references (a kind of mean or typical pattern) in the set of resultant approximate patterns. It then constructs the optimal normalized pattern whose correlation coefficient against the reference in the range achieves the highest value among various combinations of candidates. We applied the procedure to time-course electrophoretic data produced by HiCEP, an AFLP-based expression profiling method which can detect a slight expression change in DNA fragments. We obtained dissimilar ranges whose electrophoretic patterns were obviously different from the reference and as expected, most of the fragments in the detected ranges were short (< 100 bp). The normalized electrophoretic patterns also agreed well with reference patterns. CONCLUSION: The normalization strategy presented here demonstrates the importance of pre-processing before electrophoretic signal comparison, and we anticipate its usefulness especially for temporal expression analysis by the electrophoretic method
    corecore